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a b s t r a c t

In the pattern comparison disciplines, forensic practitioners evaluate two impressions with respect to the 
same-source and different-sources propositions. The results are communicated using a pre-determined 
conclusion scale, and in the friction ridge discipline Identification is typically the highest category on the 
scale for reporting evidence supporting the same source proposition. Although error rates have been 
measured in most disciplines, there are no widespread quantitative approaches and therefore most con
clusions rely on subjective human evaluations. The current work uses articulation decisions provided by 
fingerprint examiners in error rate studies to produce a quantitative likelihood ratio measure that char
acterizes the strength of the support for the two propositions. We use an ordered probit model to sum
marize the distribution of responses of examiners who participated in error rate and validation studies. We 
then aggregate the data for all image pairs in a database to construct a set of likelihood ratios based on the 
ratio of the two strength-of-support values. We find that these values are modest relative to values typically 
produced by DNA analysis or implied by current fingerprint articulation language. The technique can be 
applied to any pattern comparison discipline for which error-rate data is available, and therefore can be 
used to appropriately weigh the evidence from different disciplines.

© 2023 Elsevier B.V. All rights reserved. 

Forensic practitioners in the pattern comparison disciplines such 
as fingerprints, toolmarks, firearms, footwear, or handwriting typi
cally compare an unknown impression or sample against an im
pression or sample from a known source. The results are 
communicated either using a categorical conclusion scale or a sub
jective likelihood ratio, and in most cases these are conducted by 
human examiners rather than by computer-based measures of si
milarity. In the latent print discipline, print impressions that are 
collected from crime scenes are compared with known impressions 
either taken from a suspect or retrieved from a computer database. 
Variations in deposition pressure, contact, and surface material 
produce differences in appearance for impressions of the same skin, 
and large database searches introduce the possibility of close non- 
matches that make some comparisons challenging. In the US, fin
gerprint examiners have traditionally expressed their conclusions 
using one of three different articulation statements: Identification, 
meaning they believe that the two impressions came from the same 

finger; Exclusion, meaning they believe that the two impressions 
came from different fingers; or Inconclusive, meaning they cannot 
make any other determination. A latent print may also be judged not 
of value, in which case it typically is not compared. Identification 
decisions are usually verified by a second examiner, although this 
practice is not universal.

Articulation statements such as Identification or Exclusion are 
posteriors, in the sense that they are statements about a hypothesis 
(i.e. the same finger made the two impressions) rather than a 
statement about probability of observing a particular degree of 
correspondence given the same-source and different-sources pro
positions. Because the statements are posteriors, they transpose the 
conditional [29], subsume the role of factfinder that is typically the 
domain of the jury or judge, and can lead to “ipse dixit” (because I 
said so) reasoning. For these reasons, the National Research Council 
criticized the lack of scientific foundation for these decisions [1].

An alternative approach is to characterize the strength of the 
evidence in terms of a likelihood ratio. One definition is this:  

“A likelihood ratio compares the probabilities of observing the evi
dence under two different hypotheses.” ([4], p. 2)
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In an expanded form, a definition might look like this, which is 
our summary of several different definitions and articulation docu
ments:  

A likelihood ratio expresses a forensic examiner’s assessment of 
the relative probabilities of the observations if one proposition is 
true versus if the other proposition is true. The two propositions 
typically come from the case, and may involve the proposition 
that the suspect contributed to the sample vs some unknown 
individual contributed to the sample.

One way that the finder of fact can use the likelihood ratio is 
through Bayesian updating. They first evaluate how much more 
guilty than innocent they believe the suspect is before hearing the 
forensic evidence (which represents the prior odds), and then mul
tiply that ratio by the likelihood ratio provided by the forensic evi
dence to produce an updated posterior ratio that represents how 
much more guilty than innocent the suspect appears after hearing 
the new forensic evidence. This latter value represents the posterior 
odds, which can then become the prior odds when the next like
lihood ratio is introduced during the case. This process assumes that 
the evidence is both probative and viewed as credible.

The likelihood ratio metric is widely viewed as a straightforward 
way to integrate new information with existing evidence [4,9]. There 
are challenges for novices in interpreting likelihood ratios [24], but 
the logical foundations for the likelihood ratio are widely accepted 
[2]. In Europe, the benefits of likelihood ratios have been acknowl
edged through explicit policy recommendations, and in the absence 
of quantitative approaches European practitioners have adopted a 
subjective likelihood ratio [2].

There have been some efforts to derive a quantitative likelihood 
ratio-type measure for fingerprints. Minutiae-based likelihood ratios 
based on a limited number of minutiae and assumptions about 
within-sample variability have been proposed [16,17,15] but these 
have not seen widespread adoption and are specific to fingerprints. 
Swofford et al. [28] developed a method that uses examiner-anno
tated features (placed on minutiae on the impressions) to produce a 
similarity statistic that is evaluated against a data set to create the 
probability of obtaining the degree of observed correspondence from 
mated and nonmated impressions. Although this method is used in 
the Defense Forensic Science Center/USACIL [25], the articulation 
language is thought to be confusing to both examiners and novices 
[5] and this method is not currently widely adopted by the com
munity. The model computes statistics on a limited number of fea
tures, and only provides values in scenarios where correspondence is 
thought to be observed. The model also relies on cumulative prob
abilities and therefore is not a true likelihood ratio. Barriers to 
adoption may include the fact that government agencies are re
luctant to take on new technologies unless the perceived benefits 
outweigh the perceived risks, and agencies may have concerns about 
validation and how the courts might interpret the statistics. Any new 
technology also requires training both the examiners as well as the 
finder of fact.

Because the pattern comparison disciplines lack a current pro
cedure to calculate a likelihood ratio measure, there is no direct 
estimate of the overall strength of the evidence, which introduces 
the risk of examiners overstating or understating the strength of the 
forensic evidence when they use verbal statements to communicate 
the strength of the evidence. Most pattern comparison disciplines 
now have error rate studies, which estimate the likelihood that an 
examiner would make various errors (e.g. [30], but not the strength 
of the evidence for each image pair. Because of this, the language 
used to communicate the conclusion may not be calibrated relative 
to this strength of evidence. For example, novices typically view the 
term Identification to mean to the exclusion of all others [27] despite 
the fact that examiners have been taught to testify that Identifica
tions cannot mean exclusion to all others [10]. Some error rate 

studies have collected difficulty measurements to acknowledge the 
differences that might exist across comparisons [7,32,33]. However, 
the complexity or difficulty of a comparison is typically not com
municated to the factfinder unless the examiner provides additional 
nuance or context during reporting or testimony. Thus, all conclu
sions within the same reporting category are treated equivalently by 
the consumer.

In sum, the current conclusion scale used by fingerprint ex
aminers is inappropriate in that it transposes the conditional, has 
only three categories, is not transparent, and does not directly 
communicate the differences in strength of the evidence for each 
image pair within a reporting category. Deriving a likelihood ratio 
solves all four of these problems and would allow the factfinder to 
appropriately weigh the information received from pattern com
parison testimony with the other facts of the case.

The goal of this article is to create a quantitative likelihood ratio 
measure for the pattern comparison disciplines, here applied to 
fingerprint comparisons. Rather than rely on image features such as 
minutiae locations, we adopt an approach based on the consensus of 
human expert decisions. We are not using the minutiae, computer
ized quality metrics, or examiner annotations of the images at all, 
only the distribution of responses by experts in error-rate studies. 
Our approach uses a mathematical model that allows us to convert 
human judgments into quantitative likelihood ratios that provide 
estimates of the underlying evidentiary strength of each image pair 
as expressed by the collective responses of human experts. Our ap
proach has three key assumptions that we will expand upon: 

• The distribution of human decisions for an image pair in an error 
rate study is a proxy for the strength of the evidence for that 
image pair.

• The distribution of decisions can be summarized using an or
dered probit model for each image pair.

• By combining the output of the ordered probit model with the 
known ground truth (mated or nonmated) for each pair in a 
database, we can compute a likelihood ratio that estimates the 
evidentiary strength of each image pair in our dataset.

Below we expand on these assumptions and apply the model to 
two extant datasets.

1. Summarizing human expertise

Absent a measure of the degree of correspondence between two 
impressions provided by a computer-based approach, the judgments 
of human experts are perhaps the best measure of the strength of 
support for the same-source and different-source propositions. 
Consider the image pair shown in Fig. 1, which is an image pair used 
by Busey, Klutzke, Nuzzi, and Vanderkolk [6]. That study collected 
data from 66 examiners who each conducted 60 comparisons using 
one of three types of scales (traditional, expanded traditional, or a 
strength of support scale). The goal of the article was to measure 
how the distribution of conclusions would change if examiners were 
given different types of conclusion scales. The traditional scale used 
just Exclusion, Inconclusive, and Identification, while the expanded 
traditional scale added Support for Different Sources and Support for 
Common Source. The strength of support scale also had five re
sponses, but changed Exclusion to Extremely Strong Support for 
Different Sources and changed Identification to Extremely Strong 
Support for Common Source. Examiners were first asked whether 
the latent impression was of value (sufficient evidence to perform a 
comparison) or not, and if they selected ‘no value’ we did not include 
those trials in the present analysis.

The response distributions for the image pair in Fig. 1 are shown 
on the right panels of Fig. 1. On the top-right panel, examiners in the 
traditional scale were split, with 28 examiners making an 
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Identification conclusion, 15 saying inconclusive, and three reaching 
an Exclusion conclusion. In the middle panel, the distribution of 
responses on the expanded traditional scale favor the Identification 
end of the scale with a mixture of Inconclusive, Support for Common 
Source, and Identification conclusions. In the lower panel, examiners 
were distributed across multiple conclusions. In all three scales 
there is variability across examiners, and it is this distribution of 
responses that we will use to characterize the strength of support for 
all images in our dataset.

Contrast the image pair in Fig. 1 against that in Fig. 2. The latent 
impression in Fig. 2 has much higher quantity and quality than the 
latent in Fig. 1, and the examiners in all three scales were unanimous 
in their conclusions in Fig. 2. The differences in response distribu
tions between these two image pairs provide an intuitive sense that 
the observations that examiners derived from the second image pair 
provide more support for the same source proposition than the first 
image pair. Note, however, that 28 of 46 examiners reached an 

Identification conclusion in the traditional scale for the image pair in 
Fig. 1, and if two examiners in the same agency both reached the 
Identification conclusion then the image pair in Fig. 1 would be re
ported out as an Identification. Without additional explication, this 
conclusion would be treated as equivalent to the conclusion pro
vided by the image pair in Fig. 2 by the factfinder. However, we argue 
that these two image pairs should provide different strengths of 
support for the same and different source propositions based on the 
response distributions provided by each image pair. A quantitative 
likelihood ratio better communicates these different strengths of 
support than a categorical conclusion response scale.

Complete response distributions for all three scales for the 60 
fingerprint pairs are found in Table 1, which provide a sense of how 
the distribution of responses can vary across different image pairs. 
These are sorted by the likelihood ratio, which is described below, 
but generally the image pairs at the top of the table tended to be 
nonmated and garner mostly Exclusion or Extremely Strong Support 

Fig. 1. Example comparison from Busey et al. [6]. This pair is mated. The distributions on the right correspond to the number of examiners who reached each conclusion. The top- 
right panel has data from the traditional scale (Ex is Exclusion, Inc is Inconclusive, and ID is Identification). The middle panel has data from an expanded traditional scale that 
included Support for Common Source (SCS) and Support for Different Sources (SDS); and the bottom panel contains data from a Strength of Support Scale that replaces 
Identification with Extremely Strong Support for Common Source (ESSCS) and Exclusion with Extremely Strong Support for Different Sources (ESSDS). The blue dots and lines are 
the model fits from the ordered probit model as described in the text.

Fig. 2. Example comparison from Busey et al. [6]. This pair is mated, and the distributions on the right correspond to the number of examiners who reached each conclusion. See 
Fig. 1 for description of graphs.
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for Different Sources responses. Looking down the table, the pairs 
start to receive more Inconclusive responses and then finally more 
Identification or Extremely Strong Support for Common Source re
sponses at the very bottom. Thus, we see a continuous shift in 
support for the different source proposition at the top of the table all 
the way to support for the same source proposition at the bottom. 
The next step is to summarize across the three scales to provide a 

single estimate of the strength of support provided by each image 
pair, which will explain the mu, sigma, and LR columns in Table 1.

1.1. Ordered probit model

To summarize the distributions of responses across examiners 
(and across scales), we used an ordered probit model. This model 
gets its name from the fact that we consider the responses from 

Table 1 
Response distribution from Busey et al. [6] sorted by likelihood ratio. The mu and sigma are from the ordered probit model. Subsequent columns represent counts of each 
response for each of the three scales. NV = Not of Value. Note that odd pairID values are nonmated and even pairID values are mated. Bold likelihood ratio values are those pairs in 
which examiners gave more Identification decisions than all other responses combined (including NV), which is one measure of whether a comparison might considered 
casework-like quality. 

Traditional Expanded Traditional Strength of Support

pairID mu sigma LR Ex Inc ID NV EX SDS Inc SCS ID NV ESSDS SDS Inc SCS ESSCS NV
43 -4.45 3.17 0.01 40 0 1 0 12 0 0 0 0 0 17 0 1 0 0 0
35 -4.09 1.12 0.01 37 0 0 0 18 0 0 0 0 0 16 0 0 0 0 0
51 -2.64 1.65 0.02 29 0 0 0 19 1 0 0 0 0 22 0 0 0 0 0
29 -2.52 1.63 0.02 36 0 0 0 11 1 0 0 0 0 20 0 0 0 0 0
57 -2.17 1.94 0.02 34 1 0 0 18 0 0 0 0 0 15 1 1 0 0 0
55 -1.88 1.29 0.03 38 0 0 0 17 0 0 0 0 0 16 1 0 0 0 0
11 -1.48 1.81 0.03 29 2 0 1 18 0 0 0 0 0 14 2 1 0 0 0
17 0.62 2.15 0.12 20 12 1 5 8 2 2 1 0 1 9 4 1 2 0 2
59 0.78 1.63 0.14 22 6 1 0 10 5 2 0 1 0 5 13 1 1 0 0
53 0.79 1.59 0.14 18 9 0 7 7 2 1 1 0 6 6 7 2 1 0 3

5 0.85 1.46 0.15 24 6 1 0 13 2 3 0 0 0 3 8 8 0 0 0
3 0.87 1.09 0.15 18 7 0 5 8 6 2 0 0 3 7 6 3 0 0 2
7 1.20 0.96 0.22 4 3 0 29 2 3 0 0 0 14 1 2 1 0 0 9

37 1.22 0.82 0.22 25 8 0 4 1 7 3 0 0 2 3 7 4 0 0 6
25 1.24 1.42 0.23 20 14 0 0 5 2 10 1 0 0 8 6 3 0 0 0

1 1.26 1.61 0.23 18 8 0 0 9 4 5 2 1 0 5 9 8 1 0 0
13 1.32 0.65 0.25 5 2 0 24 3 3 0 0 0 11 0 6 3 0 0 14
31 1.33 1.39 0.25 14 16 0 1 5 5 8 0 0 1 11 2 7 0 0 1

9 1.36 1.15 0.26 18 21 0 0 5 2 4 0 0 1 6 8 4 0 0 0
41 1.40 1.31 0.28 18 16 0 0 7 5 7 0 0 0 6 4 7 1 0 0
19 1.51 0.75 0.32 12 14 0 17 1 4 1 0 0 8 1 5 2 0 0 4
23 1.61 0.69 0.36 8 22 0 11 6 5 0 0 0 5 0 6 3 0 0 4
49 1.68 1.35 0.39 16 14 0 0 4 4 9 0 0 1 4 5 11 0 1 0
45 1.82 1.01 0.46 9 20 0 7 6 2 3 0 0 6 1 3 10 0 0 5
47 1.87 0.95 0.49 7 23 0 1 3 9 5 0 0 0 4 8 12 1 0 0
21 1.90 0.94 0.51 13 26 0 0 3 5 8 0 0 2 2 2 9 0 0 0
38 2.30 0.68 0.79 2 20 0 15 1 1 9 0 0 9 0 3 7 0 0 7

2 2.38 1.05 0.86 7 20 0 13 1 3 6 1 0 5 0 0 5 2 0 9
15 2.40 0.69 0.87 2 27 0 8 0 0 13 0 0 2 1 4 11 0 0 3
39 2.42 0.93 0.89 1 4 0 30 0 0 1 0 0 15 0 0 2 0 0 17
22 2.46 0.63 0.92 0 16 0 11 2 1 11 0 0 5 0 1 14 0 0 8
10 2.46 0.67 0.92 2 32 0 1 1 2 9 0 0 1 0 3 19 1 0 1
33 2.66 0.89 1.11 2 27 0 9 0 4 8 3 0 2 0 3 6 2 0 5
56 2.70 0.99 1.14 4 24 0 7 0 4 7 4 0 3 0 3 10 4 0 1
50 2.85 1.10 1.30 2 11 1 18 1 1 4 2 0 10 0 0 8 2 0 12
12 2.93 1.41 1.39 3 20 5 1 1 3 7 5 2 1 1 5 11 2 0 0
27 3.02 1.50 1.50 0 1 0 38 0 0 0 0 0 14 0 0 0 0 0 14
24 3.24 1.11 1.83 1 10 2 15 1 0 8 4 0 7 0 1 7 6 0 8
44 3.43 1.47 2.19 2 20 5 6 1 1 4 8 1 2 0 4 6 6 2 2

6 3.54 0.82 2.43 0 35 3 4 0 0 5 7 0 1 0 0 8 3 1 3
26 3.54 1.32 2.44 2 21 8 3 0 1 7 3 1 2 0 2 8 9 1 0
48 3.64 1.14 2.71 0 26 4 4 1 2 5 11 1 1 0 0 7 7 2 2
40 3.99 1.66 3.94 3 20 13 0 1 2 3 7 3 0 0 2 1 13 2 0
46 4.02 1.14 4.06 2 20 9 1 0 1 2 12 3 1 0 0 4 14 0 0
60 4.34 1.87 5.83 2 15 14 3 1 0 3 5 6 3 0 2 2 7 2 4
14 4.38 4.01 6.10 7 7 16 0 5 0 3 2 12 0 3 4 2 4 4 0
34 4.59 2.18 7.71 3 15 28 0 0 1 4 2 6 0 0 3 5 3 1 0
32 5.37 2.28 18 1 8 16 10 0 1 0 1 5 5 0 1 3 5 6 5
28 6.06 1.98 44 0 6 23 6 0 1 2 1 11 1 0 0 1 7 9 2
52 6.47 2.28 78 1 6 22 3 0 1 0 4 11 2 0 0 0 5 13 0
30 6.93 1.68 160 0 2 30 1 0 0 1 1 16 0 0 0 0 5 13 0
16 7.24 2.57 267 0 6 30 4 0 0 0 0 10 0 1 0 0 5 12 0
54 7.73 2.80 643 0 7 33 1 0 1 0 0 13 4 0 0 1 0 9 0

4 8.23 3.05 1649 2 3 34 0 0 0 0 1 17 1 0 0 0 3 9 0
36 8.45 3.13 2543 0 3 32 0 0 1 0 1 12 0 1 0 0 3 17 0
58 8.94 4.76 7110 2 2 36 0 1 2 0 1 12 0 2 0 1 1 11 0
18 9.38 2.33 17628 0 0 35 0 0 0 0 1 16 0 0 0 1 0 19 0

8 9.75 3.34 38689 0 0 21 0 1 1 0 1 22 0 0 0 0 2 21 0
42 10.24 4.75 103527 4 0 31 1 0 0 1 0 14 0 0 1 0 1 15 0
20 10.30 1.13 117647 0 0 37 0 0 0 0 0 16 0 0 0 0 0 17 0
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examiners on an ordinal scale, in the sense that Identification pro
vides more support for the same source proposition than 
Inconclusive does, and Inconclusive provides more support for the 
same source proposition than Exclusion does. The term ‘probit’ 
comes from the assumption of the normal distribution along a latent 
(hidden) axis that is meant to summarize all of the responses to that 
image pair. Note that the use of ‘latent’ in the statistical context 
means that it cannot be directly observed but can be inferred using a 
modeling approach and should be distinguished from the shorthand 
term ‘latent’ in friction ridge comparisons where it refers to a friction 
ridge impression typically obtained from a crime scene. To dis
ambiguate these, we will refer to the statistical concept of latent by 
referencing it as a dimension, and sometimes remind the reader that 
this is hidden. The concept of a latent impression will always include 
the term impression.

Fig. 3 illustrates the elements of the ordinal probit model, and 
below we describe the foundational assumptions and then give an 
intuitive explanation for the model. The reader is invited to try two 
interactive demonstrations of the model that we created for the 
purposes of this paper. The first models the traditional scale:

https://iupbsapps.shinyapps.io/OrderedProbitDemoTraditional/.
while the second is a representation of an expanded traditional 

scale:
https://iupbsapps.shinyapps.io/OrderedProbitDemo/.
In each demo, adjust the sliders to make the bars correspond to 

the black dots (which represent a hypothetical examiner response 
distribution). See the text in the apps for more instructions and tips.

The ordered probit model assumes that there exists an under
lying latent (hidden) dimension along which the examiner accu
mulates information or evidence (top panel of Fig. 3). At the 
conclusion of a comparison, each examiner will end up at some final 

value along this latent axis. The endpoints of the latent dimension 
might be something like: The most support imaginable for the different 
source proposition and the most support imaginable for the same source 
proposition, although in principle the axes are unbounded. We 
cannot typically measure this final value using the categorical 
system, but for the sake of exposition, imagine that we had some 
brain recording device that could measure a value on a continuous 
scale that reflected the accumulated evidence for the two proposi
tions along the latent axis. Of course, the examiner has access to this 
final latent value because they make their decision based on this 
final value.

The second assumption of the ordered probit model is that there 
is a series of decision thresholds or criteria that are placed along the 
latent (hidden) dimension to obtain one of the pre-approved con
clusions (i.e. Exclusion, Inconclusive, or Identification). For example, 
if the final value along the latent dimension exceeds the threshold 
separating Inconclusive from Identification, an examiner would re
port an Identification conclusion. These thresholds can be thought of 
as system-wide or consensus thresholds that might not exactly 
correspond to the thresholds for a given examiner, but instead reflect 
the output of the group. Each conclusion scale has a different set of 
thresholds as described in more detail below.

The third assumption is that the distribution of final latent values 
across examiners can be summarized with a normal distribution 
that has a particular mean and standard deviation. This is shown in 
the top panels of Fig. 3 and Fig. 4, with the thresholds defining dif
ferent colored regions. The assumption of normality is widely sup
ported [14], although other distributions are possible. We return to 
this topic in the Discussion section where we test other latent dis
tributions.

Fig. 3. Illustration of the ordered probit model applied to hypothetical fingerprint response probabilities (black dots in lower panel) with a poor model fit. Upper panel: the 
ordered probit model assumes a normal distribution that reflects the collection of internal responses from all of the examiners who completed a comparison on a given image 
pair. Four decision thresholds are placed along the latent axis to produce predictions for the frequency for each of the five conclusions in this expanded scale. The area under the 
normal distribution between different thresholds determine the predicted response frequencies for each conclusion. Lower panel: the predicted response frequencies for each 
conclusion is given by the height of the colored bar, and are computed directly from the corresponding areas in the top panel. SDS corresponds to Support for Different Sources, 
and SCS corresponds to Support for Common Source.
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The fourth assumption is that the predicted proportion of ex
aminer responses for a given conclusion is given by the area under 
the normal distribution between the associated thresholds. This 
relation can be observed by adjusting the sliders in the app and 
watching how the different colored areas change, or by comparing 
Fig. 3 to Fig. 4. The area of each colored region directly determines 
the height of the columns in the lower graphs of Fig. 3 and Fig. 4, and 
the heights of the bars can be compared against the hypothetical 
distribution of examiner responses (black dots) to find the para
meters that best account for the examiner responses.

More formally, and using the notation from equation 23.1 in 
chapter 23 of Kruschke [11], the probability of outcome k (Exclusion, 
Inconclusive, or Identification in the case of the traditional scale) is:

µ µ µ= =p y k( , , { }) (( )/ ) (( )/ )j k k 1 (1) 

where z( ) represents the cumulative area under the standardized 
normal, kis the kth threshold, and µ and are the mean and stan
dard deviation of the normal distribution on the latent dimension. 
The lowest and highest regions are special cases where we assume 
virtual thresholds at - and + (see the above chapter for more 
details).

The goal of the ordered probit model is to summarize the support 
for the same source and different source propositions based on the 
distribution of examiner responses to an image pair. The mean µ of 
the normal distribution represents the support for the two propo
sitions provided by the examiner responses, with larger values of µ
corresponding to more support for the same source proposition. The 
standard deviation represents the consistency across examiners. 
While the decisions that examiners make are not numeric, the un
derlying latent dimension is on a metric scale, which is an as
sumption of the ordered probit model; we are using the model to 
bootstrap our way from an ordinal response scale to a metric un
derlying dimension that will characterize the strength of evidence 
for the two propositions. Experimentation with the two apps is 

intended to demonstrate that changes in any one parameter (slider) 
will produce changes in at least two and often all of the predicted 
response probabilities, and that the relation between these changes 
and the response probabilities is often unintuitive. The goal is to 
adjust the parameters (sliders in the apps) to make the predicted 
response frequencies correspond to the observed response fre
quencies. To automate this process for all of our data, we turn to 
computer-based approaches using a Bayesian framework.

1.2. Fitting the ordered probit model to extant data

The goal of our modeling is to summarize the responses from all 
of the examiners who compared a particular pair of impressions, and 
do so regardless of which scale they used. We use Bayesian methods 
described in Chapter 23 of Doing Bayesian Data Analysis [11]. We fit 
the response frequency data in Table 1, using only responses in 
which the examiner did not rate the latent as No Value. We fit the 
ordered probit model to our ordinal response frequency data with 
the following assumptions: 

• To establish the scale of the underlying latent distribution, the 
thresholds for the traditional scale trials were set to 1.5 and 4.5 
on the latent scale. We chose 1.5 and 4.5 because our expanded 
scales have 5 categories, and this approach easily generalizes to 
scales of different sizes. Note that this is not a critical assumption, 
and we could have chosen other values with identical results.

• Prior research demonstrated that examiners will shift their 
thresholds when additional categories are added, such as in the 
expanded traditional or strength of support scales [6,8]. There
fore, we allowed the four thresholds for each of the two ex
panded scales to freely vary. The thresholds are still interpretable 
relative to the fixed thresholds from the traditional scale, which 
sets the scale of the latent axis along which the expanded scale 
thresholds are interpreted.

Fig. 4. Illustration of an ordered probit model applied to hypothetical fingerprint response probabilities (black dots in lower panel) with the best fitting parameters. Compare with 
Fig. 3 to see how shifting the normal distribution to the left slightly and shifting the upper threshold to the right allows the predicted response probabilities to align much closer to 
the hypothetical response probabilities.
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• The thresholds for the two expanded scales are estimated across 
all 60 pairs in the dataset.

• Each of the 60 pairs has an individually-estimated mean µ and 
standard deviation for the normal distribution on the latent 
dimension. The mean and standard deviation are jointly esti
mated across all three scales (observe that the mean µ and 
standard deviation in the three graphs in Fig. 1 are identical).

• The standard deviations are subject to shrinkage (see Kruschke 
[11], which essentially uses other standard deviations as the prior 
for each standard deviation, and tends to reduce the variation 
across the standard deviations. This addresses concerns where 
examiners were unanimous for an image pair, which does not 
provide strong constraints on either µ or .

• We used noncommittal (diffuse) prior distributions for the means 
and standard deviations for each of the n pairs, and used a 
gamma distribution for the higher-level distribution of the 
standard deviations. For the ith pair:

µ = + =normal mean sd( (1 5)/2, 1/(5 ))i
2

gamma ( , )i Shape Rate

= +1 *Shape Mode Rate

= + +( 4* )/(2* )Rate Mode Mode SD SD
2 2 2

= =gamma mode sd( 3.0, 3.0)Mode

= =gamma mode sd( 3.0, 3.0)SD

• Each estimated kth threshold k from the expanded scales had a 
normal prior with noncommittal values:

= + =normal mean k sd( .5, 1/(2 )k
2

• We used Monte Carlo Markov Chain estimation to find parameter 
sets that produce a distribution of posteriors with highest cred
ibility, and used the median of this distribution for the estimate 
of the most credible mean and standard deviation.

The parameters of the model were estimated using MCMC 
methods using the JAGS package [21,22] in R (Team, 2013). We used 
500 initialization steps and 1000 adaptation steps, and a final chain 
of 60,000 steps thinned every 5 steps. All effective sample sizes 
were above 10,000 and the chains showed little evidence of auto
correlation. Further details and all analysis code are found in the 
osf.io site: https://osf.io/tmgdn/?view_only= 028e61dccd984d0a95 
f8107b8543aee3.

To evaluate the adequacy of the fit of the ordered probit model, 
the fits to all response distributions are shown in Fig. 5 for the tra
ditional scale, Fig. 6 for the expanded traditional scale, and Fig. 7 for 
the strength of support scale. The results of this analysis are pre
dictions for the response frequencies for each pair of impressions in 
our dataset. These predictions show as the blue dots in Fig. 5, Fig. 6, 
and Fig. 7, and the blue lines denote the 95% highest density interval 
(HDI) on the frequency estimates. The model is doing a remarkable 
job given that across the three graphs there are 10 degrees of 
freedom for each image pair, which are being accounted for by two 
free parameters (the mean µ and standard deviation ). The four 
thresholds from the expanded traditional scale and the four 
thresholds for the strength of support scale are also free parameters 
but they are fit across all 60 pairs and are therefore subject to a large 
number of constraints. Thus, the model is very far from being 

saturated, and some of the mis-predictions of the model are coming 
from simple multinomial variance.

The goal of the ordered probit model is to characterize the rich 
response data obtained in the simulated casework using only a few 
parameters. The mean µ reflects the location of the normal dis
tribution along the latent dimension. The µ in Fig. 1 is 4.59, while the 
µ in Fig. 2 is 10.27. This reflects the fact that more examiners felt 
comfortable using the highest category of responses for the image 
pair in Fig. 2 and therefore provides more support for the same 
source proposition and less support for the different sources pro
position than the image pair in Fig. 1. The standard deviation is a 
measure of examiner consistency, and in Fig. 1 is 2.18 while in 
Fig. 2 is 1.12, meaning that examiners were more consistent in their 
responses for the image pair in Fig. 2.

1.3. Computing likelihood ratios

In this next section we describe how our approach allows us to 
compute likelihood ratios for individual image pairs based on the 
distribution of responses as summarized by the ordered probit 
model, combined with information from the rest of the image pairs 
and ground truth. The normal distribution for each image pair is 
summarized by its parameters mean µ and standard deviation . The 
parameters for each of the 60 image pairs define different normal 
distributions, and these are illustrated in Fig. 8, with a linear y axis 
on the left panel and a log y axis on the right panel. Each light red 
curve corresponds to the latent distribution of a nonmated pair, and 
each light blue curve corresponds to the latent distribution of a 
mated pair. The light blue and light red curves at different locations 
along the latent axis reflect the fact that different image pairs pro
vide different amounts of support for the same source proposition 
(see Fig. 1 and Fig. 2 for examples of pairs that differ in their support 
for the same source proposition).

The height of the normal distribution at each location along the 
latent axis can be thought of as the relative likelihood that an ex
aminer would have obtained a particular value along the latent axis 
for that image pair. Stated another way, the height of a given curve is 
the relative likelihood of observing a particular latent value given 
that image pair was selected. This is the definition of a probability 
density function, which is what these curves represent.

For a particular value along the latent axis, what is the relative 
likelihood that any mated image pair would result in that value? If 
we assume that the decisions for each image pair are independent, 
we can use the mutual exclusivity rule in probability to add together 
the mated distributions (light blue curves) to create the thick blue 
curve in Fig. 8, and add together the nonmated distributions (light 
red curves) to create the thick red curve in Fig. 8. These thick blue 
and red curves are each normalized so that each area sums to 1.0 to 
make them true probability densities. The height of the thick blue 
curve in Fig. 8 represents the relative likelihood of observing a 
particular latent value in the dataset given the same source propo
sition (i.e. mated), while the height of the thick red curve represents 
the relative likelihood of observing a particular latent value given the 
different sources proposition (i.e. nonmated).

The likelihood ratio is simply the ratio of these two relative 
likelihood curves (the thick blue curve divided by the thick red curve 
at every location along the latent axis). We plot the likelihood ratio 
as a function of the latent axis in Fig. 9, with the highlighted region 
corresponding to those image pairs that received majority ID deci
sions in the three conclusion scale. The relation between Fig. 9 and 
Fig. 8 can be seen in the right panel of Fig. 8, because in the right 
panel of Fig. 8 the distance between the red and blue curves is the 
log of the likelihood ratio. Thus, even though the thick red and thick 
blue curves appears to converge on the right side in the left panel of 
Fig. 8, the right panel of Fig. 8 illustrates that the two thick curves 
continue to diverge for larger values of the latent axis, which 

T. Busey and M. Coon Forensic Science International 343 (2023) 111543

7

https://osf.io/tmgdn/?view_only=028e61dccd984d0a95f8107b8543aee3
https://osf.io/tmgdn/?view_only=028e61dccd984d0a95f8107b8543aee3


produces the larger likelihood ratios for larger values of the latent 
axis in Fig. 9.

A likelihood ratio of 1 implies equal support for the two propo
sitions. On our latent axis, the thresholds of the traditional scale 
were set to 1.5 and 4.5, implying that a value of 3 should correspond 
to the midpoint of the latent scale, or equal support for the two 
propositions. The derived value of the likelihood ratio at a value of 3 
along the latent axis is indeed very close to 1.0, suggesting that ex
aminers treat the value midway between the two thresholds on the 
traditional scale as approximately equal support for the two pro
positions.

1.4. Computing likelihood ratios for individual image pairs

Having defined the likelihood ratio as a function of the values on 
the latent axis in Fig. 9, we can now use that relation to compute 
likelihood ratios for individual image pairs. We assume that the 
estimated value of µ for a given image pair is representative of the 
typical strength of support provided by the collection of examiners 
who completed a comparison on that image pair. The likelihood ratio 
for a pair is simply the height of the thick blue curve from Fig. 8 at its 
value of µ, divided by the height of the thick red curve from Fig. 8 at 
the value of µ. Because the two curves are computed at discrete 
intervals, we use linear interpolation of the thick red and thick blue 
curves to compute the likelihood ratio. Simply put, to find the 
likelihood ratio for any image pair, use the µ associated with that 
image pair to read off the height of the curve in Fig. 9. Note that the 
value µ was chosen to represent the typical evidentiary strength of a 
particular image pair. In most forensic testimony, only a single 
likelihood ratio is reported rather than a range. The MCMC process 

calculates a 95% highest density interval (HDI) for each image pair 
for the µ parameter, and this could be used to produce a range of 
likelihood ratios rather than a single value. However, a range of 
values may suggest a form of uncertainty to the fact finder that 
might obscure the correct interpretation of the values.

Table 1 provides the distribution of responses, µ, , and like
lihood ratio values for all pairs in the dataset, sorted by the like
lihood ratio values. Inspection of Table 1 gives a sense of how a 
particular distribution of examiner responses is associated with 
different likelihood ratio values. In the Discussion we provide some 
interpretation of these values.

Although we can consider the likelihood ratio values for nonmated 
and mated pairs in Table 1, operationally the only values that typically 
matter are for image pairs that are of casework-like quality and 
therefore would get reported as a conclusion to the court system. If 
half or more of examiners determined an image pair was an “Iden
tification”, the image pair might reasonably be reported by an agency 
as an “Identification”. We defined these image pairs as “casework-like 
quality” and highlight these rows in Table 1. These image pairs de
monstrate likelihood ratios ranging from about 10–100,000, with µ
values between about 4.4 and 10 along the latent axis. The Supple
mentary Materials contained at the osf.io site linked above have a 
folder called ImagesCombinedAndSorted, which have all 60 image pairs 
along with the response distributions and likelihood ratios. These 
images will provide an important link between the computed like
lihood ratios and the subjective estimate of comparison complexity. 
The reader is encouraged to view the images in this folder to get a 
sense of the likelihood ratios associated with image pairs of different 
perceived complexities. The blue region in Fig. 9 illustrates the ap
proximate range of values for casework-like impressions.

Fig. 5. Response frequencies (pink bars) and ordinal probit model fits (blue dots) for 60 comparisons from examiners who used the traditional scale from the Busey et al. [6] data. 
Note on these graphs a rating of 1 corresponds to Exclusion, 3 corresponds to Inconclusive, and 5 corresponds to Identification, although the model does not treat these as metric, 
only ordinal.
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1.5. Fitting the FBI/Noblis Black Box data

The above analyses were fit to the data obtained in the Busey 
et al. [6] research study, and while the use of expanded scales pro
vides for better estimation of the parameters of the ordered probit 
model and the image pairs are available for publication, that study 
was not a true error rate study. To compute likelihood ratios from 
casework-like comparisons, we fit the data provided by the FBI/ 
Noblis Black Box study [30] using the same ordered probit model as 
used above.1 The Black Box study is seen as the gold standard for 
fingerprint studies designed to mimic casework [20] and 85% of the 
participants felt that the overall difficulty of the image pairs was 
similar to casework. The methods were designed to follow the ty
pical procedures of casework and the data is therefore viewed as a 
reasonable proxy for operational performance. The study tested 169 
latent print examiners who completed a total of 17,121 comparisons 
across 744 pairs of ground-truth images using a traditional 3-con
clusion scale. The study replaced the word “Identification” with 
“Individualization” to reflect a brief trend at the time, although it is 
likely that examiners treated the two synonymously. As with the 
previous traditional scale dataset, we fixed the threshold separating 
Exclusion from Inconclusive at 1.5 and the threshold separating In
conclusive from Individualization at 4.5. The choice of values for 
these fixed thresholds is arbitrary and will not affect the likelihood 
ratios, and using the same values as in the prior model fits does 
allow for comparisons of µ and with the previous data set.

Examiners in this study could also rate each latent as “not of 
value” and therefore not be required to produce a conclusion. A 
substantial number of pairs in this study have fewer than 16 ex
aminers who were willing to reach a conclusion. We judged the data 
from these image pairs to be too limited to include in the analyses, 
and therefore pruned these pairs. This left us with 491 pairs for our 
analyses. As with the previous dataset, each image pair has a mean µ
that corresponds to the amount of support for the same source 
proposition, and a standard deviation that corresponds to the 
amount of agreement among examiners who completed that com
parison. The Markov Chain Monte Carlo model demonstrated clear 
convergence with virtually all effective sample size values above 
10,000 and all above 6000. There was little evidence for auto
correlation in the chains.

Table 2 provides the response distributions for the FBI/Noblis 
Black Box study for every 10th pair and the full table is found on the 
osf.io site. As with Table 1, the rows are sorted by the likelihood 
ratio, and pairs toward the top of the table tend to be nonmated and 
garnered mostly Exclusion responses. Pairs lower down have more 
Inconclusive responses, and pairs toward the bottom have more 
Individualization responses. The lower rows tend to have larger µ
values and larger likelihood ratios (discussed below).

Fig. 10 presents the response distributions for 60 randomly-se
lected image pairs from the Black Box study. The names indicate the 
ground truth (M for mated and N for nonmated). As might be an
ticipated by the fact that each graph has two degrees of freedom and 
two free parameters, the model predictions in blue are quite accu
rate. This demonstrates that the model is accurately capturing the 
response distributions and is a reasonable proxy for the consensus 
strength of evidence as measured by the collective response beha
vior of the examiners. However, the model is fully saturated because 

Fig. 6. Response frequencies (pink bars) and ordinal probit model fits (blue dots) for 60 comparisons from examiners who used the expanded traditional scale from the Busey 
et al. [6] data. Note on these graphs a rating of 1 corresponds to Exclusion, 2 corresponds to Strong Support for Different Sources, 3 corresponds to Inconclusive, 4 corresponds to 
Strong Support for Common Source, and 5 corresponds to Identification, although the model does not treat these as metric, only ordinal. Cells with no data (i.e. all examiners 
reported no value for that comparison in this scale) are still constrained by data in the other scales for that comparison.

1 The data from the FBI/Black Box study can be downloaded from https:// 
www.fbi.gov/services/laboratory/scientific-analysis/research-and-support/black-box- 
study-results
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there are an equal number of free parameters and degrees of 
freedom, and so these good fits are to be expected.

Fig. 11 shows the relative likelihood of observing a given latent 
value for each mated (light blue curves) or nonmated (light red 
curves) image pair. As with Fig. 8, the thick red curve corresponds to 
the normalized sum of the light red curves (non mated trials), and 
the thick blue curve corresponds to the sum of the light blue curves 
(mated trials). The shape of these curves is quite similar to those in 

Fig. 8. The clusters of light red and light blue curves at the extremes 
correspond to image pairs where the examiners were unanimous 
and there are more of these image pairs than in the Busey et al. [6]
study, in part due to the use of the three-conclusion scale where 
fewer categories makes it easier to create unanimity among ex
aminers.

The ratio of thick blue to thick red curve values at each point 
along the latent axis is the likelihood ratio, which is plotted in 

Fig. 7. Response frequencies (pink bars) and ordinal probit model fits (blue dots) for 60 comparisons from examiners who used the strength of support scale from the Busey et al. 
(2022) [6] data. Note on these graphs a rating of 1 corresponds to Extremely Strong Support for Common Source, 2 corresponds to Strong Support for Different Sources, 3 
corresponds to Inconclusive, 4 corresponds to Strong Support for Common Source, and 5 corresponds to Extremely Strong Support for Common Source, although the model does 
not treat these as metric, only ordinal. Cells with no data (i.e. all examiners reported no value for that comparison in this scale) are still constrained by data in the other scales for 
that comparison.

Fig. 8. Left panel: Relative likelihood of observing a given latent value for each mated (light blue curves) or nonmated (light red curves) image pair from the Busey et al. [6] data. 
The parameters for each normal distribution were derived from the ordered probit model fit to all three scales for each comparison. The thick red curve corresponds to the sum of 
light red curves, normalized to have an area of 1.0. It represents the relative likelihood of observing each value of the latent axis from any nonmated comparison. The thick blue 
curve represents the relative likelihood of observing each value of the latent axis from any mated comparison. Right panel: Same data plotted on a log (base 10) axis.
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Fig. 12, with the estimated range of majority ID decision image pairs 
highlighted. As with Fig. 9, these values are plotted on a log ordinate 
axis. As with the previous dataset, we can compute a likelihood ratio 
for each image pair in the dataset by using the μ value for that pair to 
find the height of the red and blue curves at that μ value, the ratio of 
which gives the likelihood ratio for that image pair. These are shown 
in Table 2 for a subset of the images, and the full table is found in the 
supplementary information.

The bolded likelihood ratio values in Table 2 had more Identifi
cation responses than all other conclusions combined, which might 
be a rough proxy for casework-like quality. In the full table these 
likelihood ratios demonstrate a range of 49–22,414. These image 
pairs were associated with µvalues ranging from 4.9 to 10. Inspec
tion of Fig. 12 gives a rough range of likelihood ratios of 50–20,000 
for this range of µ values. This is a slightly narrower range than the 
values observed in the previous dataset, Fig. 9, which ranged from 10 
to 100,000.

1.6. Parameter sensitivity analysis

We conducted a sensitivity analysis to determine whether the 
range of likelihood ratio values are a function of our particular choice 
of model parameters. There are three model assumptions that have 
the potential to affect the range of observed likelihood ratio values.

The first is the assumption of the normal distribution for the 
underlying latent distribution. If some examiners are outliers and 
behave differently than their colleagues, this might be better 

reflected by underlying distributions that have heavier tails. To 
model this, we replaced the normal distribution on the latent di
mension with a Student’s T distribution with five degrees of 
freedom, which produces a fairly heavy-tailed distribution. The net 
result was that the likelihood ratio values were reduced, with no 
likelihood ratios above 1100 for either dataset. This likely results 
from the fact that heavier tails in the distributions simply allow the 
nonmated pair distributions to extend further to the right, lowering 
the likelihood ratio values. We also replaced the normal distribution 
with a logit distribution and found similar results as above, which 
might be expected based on the fact that the logit also has a fairly 
heavy-tailed distribution.

The second potentially consequential assumption is the prior on 
the values of µ. Note that in Fig. 11 there are a group of distributions 
centered at -3 and 9. These come from the pairs that had unanimous 
responses, and the assumption of a fairly narrow prior on the ex
pectation for the distribution of µ values will affect the location of 
these two groups along the latent axis. This results from the fact that 
when the data is unanimous, the model has no constraints and in 
principle could keep pushing the distributions to the extremes 
trying to get as much area under the normal distribution to the right 
of the upper threshold or to the left of the lower threshold. This is 
constrained in the Bayesian approach through the use of the prior on 
µ, which sets our expectations for how extreme the µ values should 
be. The previous models used a standard deviation of 5, which is the 
number of categories in the expanded scales. However, to explore 
the dependence of the likelihood ratios on this assumption, we fixed 

Fig. 9. Likelihood ratio values for different values along the latent axis from the Busey et al. [6] data. The y-axis is plotted on a log(10) axis. The log of the likelihood ratio can be 
observed directly as the difference between the thick blue and thick red curves in the right panel of Fig. 8. The blue area represents the range of image pairs that received a 
majority of identification decisions.
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the standard deviation of the prior distribution at 50 and reran the 
models. This had little effect on the likelihood ratios derived from 
the first dataset, and slightly decreased the likelihood ratios for the 
FBI/Noblis black box dataset, especially for µ values above 5.

A third assumption is the assumption of shrinkage for the values 
of for the normal distribution on the latent dimension. Shrinkage is 
a mechanism by which the values of act as mutually informative 
during the MCMC estimation process. This can benefit the parameter 
estimation because it can deal with extreme cases where the ex
aminers were unanimous and the values of µ and are poorly 

constrained for unanimous pairs. However, we removed this con
straint and replaced it with a generic and vague prior of a gamma 
distribution:

= =gamma(mode 3.0, sd 3.0)n . We re-ran the model fits 
from both datasets. For the FBI/Noblis black box dataset the like
lihood ratios were slightly reduced, especially at higher values of µ, 
but these changes were small. For the Busey et al. [6] dataset, the 
likelihood ratios were also reduced, especially at higher values of µ. 
These effects are likely due to the fact that without shrinkage, some 
of the nonmated distribution variances are large and can extend into 
the range of 5–10 on the latent dimension where mated pairs tend to 
occur. There are lots of sensible reasons to include shrinkage to avoid 
these kinds of effects, and therefore we feel that this assumption is 
justified.

Given the above sensitivity analyses, we believe that the like
lihood ratios are relatively insensitive to the choice of parameters 
and assumptions, and our current parameters provide the best es
timates of the likelihood ratios for each image pair. The OSF.io site 
has a folder called SensitivityAnalysisGraphs that contains the graphs 
for these sensitivity analyses, and the source code contains flags to 
run these experiments. The readme.md document documents the 
different files found in that folder, as well as how to run the sensi
tivity analysis.

1.7. Interpreting likelihood ratios

A major contribution of the present work is that we have used 
human judgments to quantify the strength of evidence of fingerprint 
comparisons using the likelihood ratio. It may come as a surprise to 
some readers how low these values really are when compared to 
existing likelihood ratio calculations from other disciplines. 
Inspection of Table 1 and Table 2 provides a point of reference when 
interpreting the likelihood ratios. For example, consider the re
sponse distributions on the right side of Fig. 1. Although some ex
aminers were willing to conclude Identification or Support for 
Common Source for this image pair, others were not willing or even 
Excluded. This leads to a likelihood ratio of 7.7, which is quite low 
relative to the astronomical levels observed in DNA, where values 
can easily exceed a billion. A statistically-literate jury member might 
interpret this likelihood ratio as follows (assuming the evidence was 
probative): However more times guilty than innocent the defendant 
was prior to hearing the fingerprint evidence, we would multiply 
that odds ratio by 7.7 to obtain a new odds ratio that reflects how 
much more guilty than innocent the defendant is. For example, if a 
jury member felt that the defendant was twice as likely to be guilty 
than innocent before the fingerprint testimony, the updated odds 
would be 15.4 times more likely to be guilty than innocent, assuming 
that the evidence was probative and the forensic practitioner 
seemed credible. Of course jury members can and do interpret these 
likelihood ratios in ways that do not align with the actual numerical 
value, typically underweighting the strength of the evidence [12,13].

Seen in this context, fingerprint evidence with low likelihood 
ratios can still produce a meaningful contribution to the case. When 
interpreted properly by the finder of fact, the relatively weak evi
dence in the image pair in Fig. 1 can be given appropriate weight but 
still be useful. In sum, the strength of the evidence provided by the 
image pair in Fig. 1 is not meaningless, but it also should not be given 
the same weight as an Identification on the image pair in Fig. 2 with 
its much higher likelihood ratio.

What determines the range of likelihood ratios that we see for 
typical casework? There are several factors.

First, consider the height of the thick blue curves in Fig. 8 and 
Fig. 11. There is a hump around 2.5 that corresponds to impressions 
that examiners agreed to compare, but many examiners ultimately 
reached an Inconclusive decision. Because the thick blue curve is 
normalized, this will reduce the height of the thick blue curve in the 

Table 2 
Representative data (decimated) from the FBI/Noblis Black Box study. The mu and 
sigma are from the ordered probit model. Pairs are sorted by the likelihood ratio (LR). 
Counts on the right side of the table correspond to the number of examiners who gave 
Exclusion (EX), Inconclusive (Inc), Individualization (ID), or No Value (NV) responses. 
Ground truth for each pair is given by the first letter of pairID (N = nonmated; M = 
mated). Bold likelihood ratio values are those pairs in which examiners gave more 
Identification decisions than all other responses combined (including NV), which is 
one measure of whether a comparison might considered casework-like quality. This is 
a decimated table of the full table which is found in the Supplementary Information 
as BlackBoxDataForTable2.csv. Note that tradeoffs between µ and can produce larger 
values of µ for pairs that have one or more erroneous exclusions than those that do 
not (see bottom rows), although this has only a small effect on the likelihood ratio 
values. 

pairID mu sigma LR EX Inc ID NV

N134386 -3.30 3.42 0.01 21 0 1 0
N141140 -3.06 0.91 0.01 24 0 0 0
N052071 -3.04 0.91 0.01 25 0 0 0
N316304 -3.03 0.91 0.01 25 0 0 0
N352366 -3.01 0.90 0.01 23 0 0 0
N030028 -3.00 0.91 0.01 23 0 0 0
N143447 -2.35 3.33 0.01 20 1 1 0
N232229 -1.37 1.65 0.04 25 1 0 0
N068466 -1.31 1.65 0.04 23 1 0 0
N129150 -1.20 1.65 0.05 20 1 0 0
N289238 -0.69 2.77 0.07 24 5 1 0
N267256 -0.33 1.69 0.09 20 3 0 0
N131138 -0.04 1.60 0.11 21 4 0 0
N076034 0.16 1.56 0.13 22 5 0 0
N291267 0.49 1.48 0.18 19 6 0 0
N248399 0.87 1.41 0.27 15 7 0 0
N231222 1.34 1.23 0.47 11 9 0 0
N175476 1.58 1.10 0.62 9 11 0 1
N054456 1.87 0.96 0.84 6 13 0 6
N014401 2.12 0.79 1.09 5 21 0 1
M227221 2.23 0.77 1.23 3 17 0 9
M212203 2.33 0.74 1.37 2 16 0 0
M227218 2.48 0.69 1.65 1 15 0 5
M272293 2.52 0.59 1.73 1 27 0 0
M349360 2.82 1.09 2.39 2 17 1 1
M253292 3.00 0.32 2.76 0 25 0 0
M238199 3.00 0.35 2.77 0 18 0 0
M042016 3.00 0.98 2.77 1 17 1 0
M100128 3.00 0.35 2.77 0 19 0 8
M169159 3.32 3.52 3.47 9 9 11 0
M056047 3.50 0.64 4.18 0 19 1 8
M080067 3.69 0.78 5.52 0 14 2 4
M160093 3.91 1.37 8.24 1 20 10 1
M135098 4.11 0.87 12 0 21 9 0
M257251 4.36 3.15 18 3 5 8 2
M317305 4.94 3.16 49 3 6 12 0
M050058 5.24 1.41 81 0 7 17 2
M074062 5.52 1.46 127 0 7 23 0
M102094 6.00 3.43 255 3 6 20 0
M048058 6.28 1.61 367 0 4 27 0
M062013 6.63 2.99 557 1 3 15 0
M130138 7.12 1.67 968 0 1 18 0
M011013 7.70 4.61 2076 3 1 18 0
M045029 8.90 0.95 10521 0 0 16 0
M155096 8.96 3.46 11216 1 0 17 0
M320310 8.99 0.92 11642 0 0 21 0
M311295 9.05 0.91 12270 0 0 23 0
M086009 9.07 0.89 12571 0 0 28 0
M047051 9.19 3.42 13998 1 0 20 0
M173155 10.06 4.18 22414 2 0 33 0
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range of about 5–10, which corresponds to typical casework. Es
sentially, the likelihood ratio values for higher-quality prints are 
being dragged down by the complex comparisons that cause dis
agreement or a majority of inconclusive decisions. Agencies could 
solve this by applying additional quality measures to complex im
pressions or applying a minimum standard to determine which 
impressions are classified as “of value”. This would increase the 
likelihood ratio values for higher quality impressions, as image pairs 
with lower µvalues would no longer create the hump around 2.5 in 
the thick blue curves in Fig. 8 and Fig. 11. Defining what this standard 

would be is outside the scope of the present work and is an op
portunity for future discussion.

Second, the likelihood ratios tend to depend on the behavior of 
the tail of the distributions. The original Black Box study was focused 
primarily on erroneous identification outcomes, where examiners 
conclude Individualization to nonmated pairs. It took tens of thou
sands of trials to observe just 6 of these errors, which demonstrates 
how difficult it is to estimate erroneous identification effects. 
However, the height of the thick red tail is not just determined by 
these few errors, but by all of the responses to all of the non-mated 

Fig. 10. Model fits to 60 randomly-selected pairs in the FBI/Noblis Black Box study [30]. The pink vertical bars provide the frequency of examiners who reach each conclusion, and 
the blue dots correspond to the predictions from the ordered probit model. See text for details.

Fig. 11. Left panel: Relative likelihood of observing a given latent value for each mated (light blue curves) or nonmated (light red curves) comparison for the FBI/Noblis Black Box 
data [30]. The parameters for each normal distribution were derived from the ordered probit model fit to all three scales for each comparison. The thick red curve corresponds to 
the sum of light red curves, normalized to have an area of 1.0. It represents the relative likelihood of observing any nonmated comparison at each value of the latent axis. The thick 
blue curve represents the relative likelihood of observing any mated comparison at each value of the latent axis. Right panel: Same data plotted on a log(10) axis.
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image pairs. The utility of the ordered probit approach is that it 
translates categorical statements into an underlying distribution to 
explore the relation between the support for the same-source and 
different-sources propositions for all image pairs in the database. We 
explored various alternative distributional assumptions, but none 
produced larger likelihood ratios, and most distributions have hea
vier tails than the normal distribution.

Finally, the range of likelihood ratio values differs markedly from 
feature-based approaches such as Neumann et al. [15], which used 
triangulation of minutiae to derive features from which configura
tions could be compared. The measured likelihood ratios depend on 
the number of minutiae but are much higher than those reported in 
the present work. Although there is some debate about whether the 
likelihood ratio values reported in the paper depend on the choice of 
weighting functions (see comments at the end of their paper), ty
pical LR values ranged from 105 to 1010 for mated pairs with between 
5 and 10 minutiae (see Fig. 5 of Neumann et al. [15]). Why are these 
values so much higher than our likelihood ratio values that are based 
on human judgments? In the case of the present approach, we are 
not measuring the evidentiary strength of fingerprints, but instead 
we are measuring the evidentiary strength of human judgments 
about fingerprints. When a human testifies based on their observa
tions and experience, our approach characterizes the evidentiary 
strength of that testimony. We are not arguing that our examiner 
consensus-based approach is superior to a feature-based approach; 
indeed, if a feature-based approach can augment or replace human 
judgments then it would obviously be preferred. However, the fact 

that algorithmic approaches demonstrate LRs of 105–1010 does not 
imply that human judgments therefore have similar evidentiary 
strength.

The range of typical likelihood ratios we observe may also align 
with our expectations based on the repeatability (intra-examiner) 
and reproducibility (inter-examiner) results reported by Ulery et al. 
[30,31]. While repeatability was high within examiners, reaching 
90%, it was notably lower on image pairs noted as difficult. The au
thors attributed much of the variability to borderline cases, which 
the ordered probit model handles by having the latent distribution 
span across several decision categories. This will typically lead to 
lower µ values for many image pairs, creating the overlapping dis
tributions seen in Fig. 8 and Fig. 11 between mated and nonmated 
pairs.

1.8. Implications for forensic science

How should we evaluate the range of likelihood ratios we ob
serve? In our view, the range of typical casework values in the Busey 
et al. [6] dataset tends to fall in the range of 10–100,000 based on our 
subjective evaluation of the images in the folder Im
agesCombinedAndSorted in the Supplementary Information and the 
fairly arbitrary criterion of receiving more Identification responses 
than all other responses combined (see bold numbers in Table 1). 
Likelihood ratios were similar in the Black Box error rate study data, 
ranging from 50 to 20,000. These values are quite modest relative to 
verbal scales produced by DNA analysts. For example, SWGDAM [26]

Fig. 12. Likelihood ratio values for different values along the latent axis for the FBI/Noblis Black Box data [30]. The y axis is plotted on a log(10) axis. The log of the likelihood ratio 
can be observed directly as the difference between the thick blue and thick red curves in the right panel of Fig. 11. The blue region illustrates the approximate range of image pairs 
with majority ID decisions.
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has a verbal equivalent scale in which the range of 100–10,000 is 
listed as “Moderate support for inclusion”. The Association of For
ensic Science Providers have a verbal equivalence scale [3] that lists 
a range of 10–100 as Moderate Support, 100–1000 as Moderately 
Strong Support, 1000–10,000 as Strong Support, and 
10,000–1000,000 as Very Strong Support. These ranges are very 
different than the Extremely Strong Support for Common Source 
language that has been proposed for an expanded fingerprint scale 
[19] which would require a likelihood ratio of over a million on the 
Association of Forensic Science Providers scale. It is unlikely that 
Extremely Strong Support for Common Source would be used sy
nonymously as Identification, and in Busey et al. [6] examiners re
served used this statement less often than they used Identification. 
However, this statement might be viewed as a drop-in replacement 
for Identification by some examiners (which by itself might be 
overinterpreted by laypersons, see Swofford and Cino [27]). Given 
the range of likelihood ratios observed in the present work, the term 
Identification may only be appropriate for very clear impressions, 
which also provides an argument for expanded conclusion scales 
that include phrases such as Support for Common Source.

The ordered probit model likely underestimates the true evi
dentiary value of very clear impressions that receive unanimous 
conclusions. Consider the impression in Fig. 2, which was unan
imous across all three scales. The ordered probit model will try to 
accommodate unanimity by making µ as large as possible, and in the 
Bayesian case, µ is constrained only by the prior placed on µ. 
Without this constraint, the model would essentially make µ infinite 
for unanimous comparisons, producing infinite likelihood ratio va
lues. The true likelihood ratio of such an image pair is likely much 
larger than the ∼110,000 value that is estimated by the model, but 
this image pair represents such high image quality and quantity that 
the quantification of the strength of the evidence is almost un
necessary because the amount of agreement is apparent to even the 
untrained eye. However, this is not true for the bulk of casework-like 
impressions where likelihood ratios are in the range of 50–20,000. 
For these casework-like image pairs, the model is well-behaved in its 
estimate of µand therefore the likelihood ratio is an accurate esti
mate of the strength of support for the same source and different 
sources propositions.

1.9. Comparing disciplines

Our use of the ordered probit model to estimate likelihood ratios 
for individual image pairs readily extends to any forensic discipline 
for which error rate or black box testing is available. This model 
answers calls for a unified evidence scale across disciplines [18]. A 
nice feature of our approach is that while many forensic disciplines 
tend to use similar language (i.e. Identification is often the highest 
category of responses), we anticipate that the likelihood ratios ob
tained across disciplines will vary widely, which may mirror the lay 
understanding of the relative strengths of different disciplines 
(Thompson & Newman, 2015). By computing the range of likelihood 
ratios for typical casework-like comparisons in a variety of forensic 
disciplines, the ordered probit model could help jurors and prose
cutors appropriately weigh the evidence from different forensic 
disciplines. The use of the ordered probit model readily accom
modates laboratories that use different conclusion scales (or even 
traditional vs expanded). The model can also be applied where 
agencies use subjective likelihood ratios [2], because the distribution 
of subjective likelihood values from ground-truthed images can be 
directly modeled with a latent normal distribution without the need 
for thresholds.

The likelihood ratio values are independent of the number of 
mated and nonmated pairs in the database, because each set is 
normalized separately. One advantage of likelihood ratios is that 
they are independent of the prior probability of a mated pair (i.e. 

how good your detectives are or how big your database is). A finder 
of fact can simply form their own prior odds and multiply these by 
the likelihood ratio to get an updated posterior odds value. The 
likelihood ratio is also independent of the size of the conclusion 
scale or the wording used to construct the conclusion scale, as long 
as the ordered probit model is constructed properly. Thus, the cur
rent approach can provide quantitative measures of the strength of 
evidence across forensic disciplines, laboratories, and reporting 
styles.

1.10. Applications to casework

We believe that the current approach might also work for active 
casework comparisons to provide a likelihood ratio for each com
parison. Suppose we knew the likelihood ratios for six fiduciary 
image pairs that are derived from distributions of examiner re
sponses in an error rate study (and the present work provides one 
source for these likelihood ratios). An examiner could individually 
examine each fiduciary image pair to determine how much support 
each image pair provided for the same source proposition. To do this, 
they would assess the relation between the two images as if they 
were conducting a comparison, but instead of reaching a decision 
they would simply note the amount of support for the same source 
proposition. This is a subjective process much like the decision in 
casework, and it is based on a comparison between the physical 
features of the two impressions. These judgments are subject to the 
same inter-examiner variability and biases that occur in casework, 
but these can be minimized as explained below.

When a casework image pair is compared, the examiner would 
determine how much support this image pair offered for the same 
source proposition, and this value could be compared against each of 
the six fiduciary image pairs. By ranking the casework value against 
the values provided by the fiduciary image pairs, we can determine a 
likelihood ratio value for the casework image pair by reference to the 
known likelihood ratios from the fiduciary image pairs.

There are a variety of ways that we might accomplish this 
comparison between casework and fiduciary image pairs. We are 
exploring a method developed by Saaty [23] that allows us to place 
the current casework image pair relative to the six fiduciary com
parisons, each of which has a known location along the latent di
mension in Fig. 9. This comparison involves choosing from a 
selection of statements such as “The casework image pair provides 
Definitively more support for the same source proposition than the 
current fiduciary image pair.” The range of modifiers include De
monstrably, Moderately, Slightly, and Equal Support, and the state
ments are reversed to allow for the current fiduciary image pair to 
provide more support than the casework image pair for the same 
source proposition. These statements are then converted to a metric 
axis using an Eigenvector decomposition as detailed in [23], which 
locates all six fiduciary image pairs and the current casework image 
pair along this metric axis. The fiduciary values along the metric axis 
can be regressed against their known likelihood ratio values, and the 
regression equation provides an estimate of the likelihood ratio for 
the casework image pair through its metric value.

These comparative judgments would be subject to the same 
inter-examiner variability and biases found with traditional deci
sions. The greatest concern might come from an examiner who felt 
that a particular casework pair provided much more support for the 
common source proposition than their peers feel is warranted. This 
might produce an unjustifiably high likelihood ratio by the proposed 
method. There are three elements that ameliorate this concern. First, 
the relation between the estimated metric values from the sub
jective judgments and the calculated likelihood ratios might not 
correlate for the six fiduciary image pairs, which would serve as a 
warning sign that the Eigenvalue solution is inaccurate for this 
particular examiner. Second, labs could conduct technical review of 
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two independently-estimated likelihood ratios to determine whe
ther they are within some acceptable range. Finally, image pairs with 
known likelihood ratios could be inserted into the casework work
flow to identify whether the examiner-estimated likelihood ratios 
are within some acceptable range of the likelihood ratios calculated 
from error rate studies. Proficiency testing would be done in similar 
manner. Thus, casework would proceed in a similar manner as 
currently practiced in the United States, with the exception that 
examiners would offer observations instead of conclusions, and 
those observations would be in the form of likelihood ratios that 
directly provide the strength of support for the same- and different- 
source propositions.

The likelihood ratios could also be related directly to objective 
measures of feature quality, quantity, and rarity, such as those pro
vided by LQMetric (Ulery et al. [34]) and FRStat [28]. This would 
provide an association between physical measures and the ex
aminer-based likelihood ratios. The challenge with this approach is 
that it requires a large number of image pairs to measure the asso
ciation. The data from Busey et al. [6] has too few likelihood ratios 
from majority-ID image pairs, and the Ulery et al. [30] images are not 
publicly available. However, future work could explore various 
image-based analyses on image pairs that are both available and 
have error rate data.

Should this proposed approach prove reliable, it would provide 
the means to quantitatively measure the strength of fingerprint 
evidence, and the methods could be extended to operational case
work. Once validated, the techniques above could be used in any 
forensic discipline for which error rate studies are available.
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